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1 Introduction

This research introduces a broad class of distributed algorithms which extend operator
splitting approaches like progressive hedging, Douglas-Rachford splitting, the Ryu splitting
algorithm, and the recent Malitsky and Tam algorithm ( ). We
parameterize this class of algorithms in terms of a set of matrices which characterize them,
and use the parametrization to build semi-definite programs which provide alternative
algorithms striking a middle ground between centralized hub and spoke and decentralized
ring designs. We analyze their convergence properties and compare their performance across
a wide variety of decentralized distributed optimization problem classes and applications.
These classes include distributed coordination problems with both local and shared decision
variables, multi-stage stochastic programming problems, and mixed integer variants of
these. We apply the algorithms to mission optimization by distributed military systems and
electrical grid coordination. We examine empirical run time and rate of convergence as well
as measures of inter-node communications, particularly under degradation of the network.

2 Motivating Examples

2.1 UxS Mission Optimization

Planned DoD investments in unprecedented numbers of unmanned systems (UxS) under the
Replicator program create an opportunity for the use of large scale optimization to maximize
their mission utility ( ). While a large body of work describes splitting
algorithms suitable for large scale optimization at this level, little existing research does so
in a decentralized manner which uses the platforms as the edge computation nodes and builds
the algorithms not only for speed and memory efficiency, but also for network robustness
and communication efficiency. This research tailors the algorithm to take advantage of the
computing power on each node while accounting for their communication constraints and
minimizing their communications while preserving minimal levels of redundancy.

Weapon Target Assignment

The (extensively studied) Weapon Target Assignment (WTA) problem matches a set of
munitions which vary in kind and quantity against a set of targets which vary in targetability,
kind, and quantity in order to minimize adversary success. Each munition has a particular
level of effectiveness against a given target, which may vary based on the type of each
and potentially the distance from the firing platform to the target as well. Standard WTA
formulations then model post-engagement adversary effectiveness as the weighted sum of
the remaining mission effectiveness of adversary platforms after the engagement. In the
static WTA problem, all information becomes available at the beginning of the engagement.
In the more difficult dynamic WTA problem, the engagement proceeds through multiple
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rounds with increasing levels of information made available. In its canonical form, the
static WTA problem is formulated as an integer program with a convex non-linear objective
function, but several authors have found tractable relaxations which provide high quality
integer solutions even for large problems ( ; ;

). See appendix 1 for one such formulation. The methods described below can
solve the continuous relaxation of this problem without any modification.

Mining

The UxS mining problem we examine consists of determining the number of mines n
platforms will drop in m planned minefields. The objective function penalizes under- and
over-shooting the target number of mines for each field and includes a secondary cost
penalty for each platform-minefield pairing. The cost penalty is a function of endurance cost,
survivability cost, and mission cost. The distance between a given platform and minefield
and its speed determine the endurance cost penalty for a given pairing. This endurance
penalty may have a multiplier which expresses the alternative utility of the platform for
other missions per unit time. Given the possibility of non-permissive environments and
challenging environmental conditions, the cost function also incorporates a survivability
cost which captures the risk to the platform incurred by executing the mission. This risk is a
function of the platform value and the likelihood of platform loss. The utility of the platform
for other mining missions (and the difficulty of re-arming it) determine the mission cost of
a given pairing. See appendix 1 for a sample formulation.

Decentralized optimization application to UxS

In each of these cases, the challenge lies in optimizing the mission in a timely manner
across a large number of assets which have their own onboard computers. Solving — and
even approximating — these optimization problems in time may not be possible on a single
platform given the onboard processing power available. Splitting methods offer an approach
which instead splits the sum of individual functions in the objective across the computing
nodes, creating decision variables on each node which must then be brought to final a
consensus value which is common across the nodes. In cases where the individual functions
depend on variables which impact only that function, splitting also benefits from separability.
Other approaches to decentralized optimization include gossip algorithms, which rely on
stochastic point to point communications governed by a doubly stochastic mixing matrix

( ), primal-dual gradient based methods (including PDHG) ( ;
), and P-EXTRA, a splitting method which relies on mixing matrices
across multiple time steps for consensus ( ). Recent work by ( ),

however, has shown promising results for the frugal splitting methods described below
relative to P-EXTRA and PDHG.



2.2 Large Scale Parallel Computing

It is also possible that bespoke frugal splitting methods could speed up parallel optimization
in high performance computing (HPC) clusters by tailoring the consensus process and
subproblem sequence to the architecture of the given system and problem. This portion of
the research focuses on the stochastic unit commitment problem as a test case for exploring
the benefits of tailored frugal resolvent splittings in HPC settings and for stochastic programs
in general.

Stochastic Unit Commitment
The power generation unit commitment problem provides another well-studied and eco-
nomically valuable problem which has a finite sum objective function amenable to splitting.
In it, a utility system operator decides which generation units to operate, and at which level,
to meet power demand over a number of discrete time periods while minimizing overall
cost. Typical instances optimize over hundreds of generating units and tens of time periods.
Non-stochastic versions of the problem can be solved relatively quickly (

), but stochastic instances are so large that extensive form solutions become intractable
( ). Decentralized optimization methods using progressive hedging and Ben-
ders decomposition have made significant progress in finding good solutions in reasonable
time frames ( ). Some of these centralized approaches also incorporate asyn-
chronous updates between nodes to remove bottlenecks in the parallel computation (

). It is possible that designing the splitting algorithm in light of the

parallel computing architecture as is proposed below could yield further improvements in
solution speed. See appendix 1 for a sample stochastic unit commitment formulation.

3 Splitting Algorithms
In this section we review a number of concepts which support our work, primarily following
the exposition in ( ) unless otherwise annotated.

3.1 Definitions and Notation

A (potentially set-valued) operator A on a Hilbert space H is monotone if (x —y)(u—v) > 0
for all (x,u), (y,v) in its graph. A is maximally monotone if there is no monotone operator
that properly contains it.

The resolvent of an operator A on some x € H is given by J4(x) = (Id + A)~!(x) where Id
is the identity operator. Equivalently, if J4(x) = z, we have x € (Id+ A)(z) orx € z+ A(z).
Finding the stationary point x = J4(x) is therefore equivalent to finding a zero of A.
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The prox of a function f at x is defined as prox;(x) = argmin, f(u) + %llu — x||>. The
resolvent of the subdifferential of a convex, closed, and proper (ccp) function is the prox
operator of that function.

Proof 1 Letz = (Id+0 f) ™" (x) for some ccp function f. This implies that x € z+0 f(z). This
means 0 € 0f(z)+(z—x). Since (z—x) = %%llz—xllz, we have z = arg min,, f(u)+%||u—x||2,
S0 7 = proxf(x) ( ).

The decomposition methods examined below typically rely on separate instances of the
decision variables on each of the n computation nodes, which are then brought into consensus
in some way. To formalize the examination of these, we defined the lifted version of a vector
of decision variables x € H from H into H" as X = (x1,x2,...,x,) € H" where each
x; € H. To concisely describe linear operations on this lifted vector, for a matrix W € R,
we then define W := W ® Id where Id is the identity on H and ® is the Kronecker product.
Then in the product Wx, each coefficient in W acts on a single element of . For a vector of
decision variables x where H is R¢, a coefficient W; ; then linearly operates on the entirety
of the j'" instance of the decision variables as a portion of the i’ element of the result (i.e.
W is a bounded linear operator from H" to H"). For some x = (x1,x3,...,X,), we have
consensus if x; =xp =--- = x, ( ).

The graph Laplacian of a weighted undirected graph G with nodes N and edges E is given
by W = D — A where D € R™" is a diagonal matrix with the weighted degree of node i in
D;; and zeros elsewhere, and A € R™" is the weighted adjacency matrix, giving the weight
of the edge between nodes i and j in A;;. If M € RIEXIN js a directed edge adjacency
matrix, we can also find the graph Laplacian W = MT M.

Every graph Laplacian has a minimal eigenvalue equal to 0, which corresponds to the
eigenvector of all ones 1,,. The graph Laplacian is also therefore symmetric positive semi-
definite. Its second smallest eigenvalue gives its algebraic connectivity, or Fiedler value.
This corresponds to the level of connectedness of the graph. The Fiedler value will be
greater than O if and only if the graph is connected. It is closely related to the edge and
node connectivity of an unweighted graph, which gives the number of edges (or nodes
respectively) which must be removed to form a disconnected graph ( ).

Frugal Resolvent Splittings

In ( ), Ryu describes the concept of a frugal resolvent splitting algorithm. The
Douglas-Rachford splitting algorithm provides the prototypical example. For a given ob-
jective function of the form . , f;(x) where f; are closed, convex, and proper, a resolvent
splitting sequentially finds the resolvent of linear functions of the subdifferentials of f; and
any previously determined resolvents. A frugal resolvent splitting calculates each resolvent
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only once in each iteration. Because the operations on the resolvents are linear, the algorithm
can be expressed in terms of a set of matrices giving the scalar multiples of the terms. See
appendix 1 for descriptions of the proximal point method, Douglas-Rachford splitting, Ryu
splitting, the Malitsky Tam algorithm, and progressive hedging in terms of the resolvent
matrices and the resulting implementation.

LetF = (df1,...,0f,). The frugal resolvent splitting with lifting from x € H to x € H"
and z € H? consists of fixed point operator T : H¢ — H given by

T(z) =z+yMx, y=Bz+Lx, x=Jp(y)

where M € R¥", B e R"™4 [, € R™" are coefficient matrices for M, B, and L (the results
of the Kronecker products described above), and y € (0, 1).

We assume the following assumptions hold:

ker M = span({1,})

B=-M"

L+LT-21d+M"™M <0

2i,j Lij =nand L is lower triangular

For every z € H?, there is a unique ¥ €  such that forx = 1 ® ¥

AN

x = Jr(Bz + Lx)

For this assumption, it suffices to have one row of L sum to zero.
6. ||IL|| <1

With the additional assumption that L is lower triangular with zeros on the diagonal in
place of assumption 5 and 6, Tam proves convergence for F = (Fy,..., F,) where all
component operators are maximally monotone (of which the set of subdifferential operators
of ccp functions is a subset). Specifically, if the set of zeros of ) F; is non-empty, then the
iterates z¥*! = T(z*) = zF + yMxF, x* = Jp(Bz¥ + Lx¥) produce a sequence (zX) which
converges weakly to a fixed point, and a sequence (x¥) which converges weakly to a point
(X,...,X) € H" such that X € zer(} F)).

Tam also notes that the matrix M functions as an edge incidence matrix linking the results
of the resolvent calculations into edges which then feed the resolvent calculations on their
nodes, and L allows the direct flow of resolvents between nodes. Given the fact that the
graph Laplacian of a matrix can be found as W = M” M where M € RIEXIN 5 the edge
incidence matrix, we can move back and forth from the graph Laplacian W and its edge
incidence matrix M as long as we assume there are no loops.
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3.2 Adaptive Resolvent Splitting

The key insight this research explores is the extension of the set of frugal resolvent splitting
algorithms by leveraging the class of matrices satisfying these requirements. This minimal
description allows the construction of semi-define programs (SDP) for designing such
matrices, and further allows the addition of various constraints and penalties on the network
structure which support its application to decentralized optimization in real-world contexts.

To our knowledge, no existing results describe the use of an SDP to design frugal resolvent
splittings. The optimization problem below lays it out in detail. Constraint la and the
requirement for W to be positive semi-definite in constraint 1e together enforce the existence
of M satisfying assumption 1 above. Constraint 1b enforces assumption 3. Constraint Ic
convexly sets the minimal algebraic connectivity of the graph defined by W, since its minimal
eigenvalue is 0 and its second gives the connectivity. Constraint 1d and the triangularization
procedure below enforce assumption 4. One of the benefits of this construction lies in the
ability offered by constraints 1f and 1g to enforce a list of prohibited communication paths
across W and L, and the option to variably penalize them via the loss function.

Algorithm design problem
The adaptive frugal resolvent splitting algorithm design problem therefore lies in minimizing
a penalty function on L and W subject to the constraints in the SDP below:

min  ¢(L, W)
Lw

st. Wil,=0 (la)
2L -2I+W <0 (1b)
(W) + (W) > ¢ (1c)
> Lj=n (1d)
W=0 (1le)
Wew (1f)
Lel (1g)

where W is the convex set of feasible values for W, £ is the convex set of feasible values
for L, ¢ is the minimum algebraic connectivity, and ¢ is a loss function which penalizes
communication.

We then recover L, M, and B. Since L must be triangular, we define a triangularization
operator Ltri : R — R™" ag
Ltri(X) =Y,
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where
Xl"j+XJ”,’ lfl<]
Yij=9Xi; ifi=j
0 otherwise.

L is then defined as Ltri(L) and still satisfies constraints 1c and 1d, and any elements L; ;i
and L ;i which must both be zero for all L e £ will still be zero in L.

We form B € R"* as the weighted edge incidence matrix of the graph determined by the
graph Laplacian W with the assumption that there are no loops. The d non-zero entries in
the lower diagonal of W imply d edges in its graph and set the dimension of B. We then let
M = —BT, completing the algorithm parametrization.

This results in the matrices which provide the algorithm design. Entry L;; determines
whether a node 7 utilizes the resolvent of node j and how much weight to assign it. Entry B;;
determines whether node i is incorporating the consensus value of the variables in which
link [ forces consensus. It need not participate in every link since the links fully connect the
graph, and the values from each nodes eventually reach the entire graph.

Implementation
Once the algorithm matrices have been designed, we solve for the minimum of }}", fi(x)
by iteratively solving the following subproblem on each node i for iteration k:

i—1 d
1 1
: k k=112
H}C!nﬁ(xi)+§||(1—Lii)xi—ZLinj —ZBilZ[ 15 ()
' j=1 =1
where x; is the copy of the decision variables on node i, x; are the decision variable
values resulting from node j ahead of i in the calculation, and zf“ = zf +y Z’;:] Mjx;.

If any constraints limit the feasible region for x;, these can be thought of as indicator
functions included in the definition of f;. If any decision variables are separable across the
functions, we can remove then from the set of lifted variables and use them only in the local
computation, setting f;(x) = inf,, fi(x, y;).



4 Proposed Contributions

Our proposed contributions lie in three areas:

1. theoretical advances in the field of frugal resolvent splittings,

2. implementation of algorithm design SDPs tailored to parallel computing and decen-
tralized optimization, and

3. application of SDP-designed splitting algorithms to the SUCP, WTA, and other rele-
vant UxS mission optimization problems.

4.1 Theoretical

Proposed theoretical contributions focus on analyzing the impact of network structure on the
rate of convergence, determining the effect of function ordering on that rate, and identifying
possible relaxations of the convergence assumptions.

Our proposed analysis of the impact of the graph structure will focus on the identification
of:

1. specific permissible graphs which facilitate the efficient parallelization of subprob-
lems,

2. ideal consensus structures striking a balance between connectedness and communi-
cation efficiency, possibly building on the analysis of exponential graphs in
( ), and

3. graphs which provide robustness to disruption (if possible).

Given existing work ( ) demonstrating path dependence in split-
ting iterations based on the ordering of functions, this work will seek to determine an optimal
function ordering based on the constituent functions’ smoothness, strength of convexity, and
the complexity of their resolvent calculations.

Finally, we may be able to expand the space of known convergent algorithms by identifying
relaxations of the assumptions stated in ( ). Possible relaxations include removing
the requirement for zeros on the diagonal of L and determining whether L+ LT —2Id+M™M
can be permitted to have a positive eigenvalue. Given the reliance of the convergence proof
on the negativity of of (x — %, [M"M — 2Id + L + L"] (x — X)), this would require showing
that x* — ¥ remained orthogonal to the eigenvector corresponding to the positive eigenvalue
for all k.

4.2 Computational
Our proposed computational contribution includes formulation and implementation of al-
gorithm design SDPs tailored to the constraints of decentralized optimization by unmanned
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platforms and parallel computing environments. The use of these types of algorithms for
solving large UxS optimization problems motivates the theoretical analysis of consen-
sus structures balancing connectedness and communication efficiency. Our computational
work will implement both the algorithm design and algorithm execution in a context rep-
resentative of UxS coordination, including latency and potential disruption. We will build
algorithms which target specific parallelization structures, function ordering, and func-
tion agglomeration to determine their relative computational efficiency and compare them
with existing centralized and decentralized optimization algorithms under similar processor
speed, memory, and communication constraints.

We will conduct similar implementation work in a parallel computing environment, build-
ing algorithm design SDPs which account for latency between nodes, data bandwidth
limitations, and parallelization.

4.3 Application

We will then apply our implementation work to significant real-world applications, initially
targeting continuous relaxations the Stochastic Unit Commitment Problem, the Weapon
Target Assignment Problem, and other relevant UXS optimization problems. We will also
examine its applicability to the integer versions via a distributed branch and bound aligned
with the splitting. A number of valuable instances of SUCP remain too large for single
compute nodes, and significant recent research continues to analyze splitting methods for
it. This work will contribute to that pursuit. Likewise, in the DOD, significant levels of
planning continue to focus on the use of large number of unmanned system to defeat enemy
aggression. The optimal use of unmanned systems enables these efforts, and this work will
demonstrate state-of-the-art options for determining that optimal employment in the WTA
and mining scenarios.

We will assess our contribution by collecting the time and number of iterations until
convergence of both the algorithm generating SDP and the final algorithm in each problem
class. For the resulting algorithms, we will analyze convergence not only deterministically,
but also under stochastic disruption. We will also examine the maximum feasible network
size given time and memory constraints on the SDP, including under direct formulation
(rather than via CVXPY) and using scalable sparse SDP solvers if needed (

).
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APPENDIX: 1

A.1 Weapon-Target Allocation Formulation
This formulation is derived from ( )

Indices and Sets
i €1...nweapons

Jj €1...1targets

Parameters
V: the value of target j

Pk;;: the probability that weapon i destroys target j

Decision Variables
x;j € {0, 1}: whether weapon i is employed against target j

[ m
minZVj ]_[(1 — Pk;;)"i (A.1)
X
=1 =1
[
sty xj<1 Viel..n (A.2)
j=1

A.2 Mining Formulation

Indices and Sets
i € 1...nplatforms

Jj € 1...m minefields
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Parameters
¢ fij: endurance cost for platform i to mine minefield j

cs;j: survivability cost associated with risk to platform i of mining minefield ;
cij = cfij + cs;j: decision cost of mining minefield j with platform i

cm;: per mine mission cost associated with risk to other mining missions for platform i (loss
of future opportunity)

uj: cost of underseeding minefield
Kk j: cost of overseeding minefield
M;: target number of mines in minefield j

pi: payload of platform i

Decision Variables
x;j: number of mines platform i mines in minefield j

y;;: 1 if platform i mines minefield j, O otherwise
u j: number of mines under the target number in minefield j

v;: number of mines over the target number in minefield j

Objective Function
min er-l:l Z?:] (Cijyij + cm,-xij) + Z;n:] (,u]'l/tj + Kjl)j)

Constraints
i xij=M;—uj+v; Vjel...m(1)

Z’]’.’:]xijSpi Viel...n(2)
xijj<piyi; Yiel...njel...m(3)
yi; €{0,1} Viel...n,jel...m4)
ui >0 Vjel...m(5)
v; 20 Vjel...m(6)
14



xj>20 Viel...n,jel...m(7)

Constraint 1 sets u; as the amount under the target based on the planned seeding and v; as
the over shoot.

Constraint 2 requires the employment to be less than or equal to the capacity of each platform

(pi)-
Constraint 3 sets x;; to 0 if y;; is 0.
Constraint 4 sets y;; to 0 or 1.

Constraints 5, 6, and 7 sets u;, v;, and x;; to be greater than or equal to 0.

A.3 Stochastic Unit Commitment Formulation
Following ( ), we use the following summary formulation for the UCP:

Indices and Sets
g€ G ={1...G} generators

t €7 ={1...T} time periods

Parameters
L € R”: the demand schedule over the timesteps.

I1, gives the feasible operating region across the decision variables and cost function for
generator g.

Decision Variables
py € RT gives the generated power schedule for generator g over the timesteps.

Py € R’ gives the maximum available power for generator g over the timesteps.
uy € {0, 1}T gives the on/off status for generator g.
6 covers other decision variables affecting the system operation (other power sources, etc).
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Functions
c4(1) gives the cost of operating generator g at time ¢ as a function of the decision variables.

min Z Z cy(2)

geG teT
8.t. Z Ag(Pgs Pgstg) + N(0) = L (A.3)
9eG
(Pgs Pgrutgscy) €Ty Vge G (A.4)

A.3.1 Full UCP Formulation

The full formulation uses the following additional decision variables seen in the stochastic
UCP below:

vy €10, 1}T gives the startup decision for generator g across the timesteps.

f1 € RT gives power flow over line / (part of the function N(#) in the Kneuven formulation.

A.3.2 Stochastic UCP

Aravena ( ) uses the following extension for the two stage
stochastic UCP, indexing across scenarios with s € §, and providing non-anticipativity for
commitment and startup via w, and z:

pan PIDIPILACG (1)

seS geG teT

s.t. Z Dast + Z fis=Lg,s€S,teT 2)
g9€G leN
(Pgs> Pgss Ugs> Vgss fs) € lys, Vs € S,Yg € G 3)
(wy, z4) € yy;, Vg€ G 4)
Ugs = Wy, Vgs =y, Vg € GsLow, S € S 4)

n here is the probability of scenario s.

GsLow are the generators which require advanced decisions for unit commitment and startup
(thermal generators, primarily).
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A.4 Algorithms

Following the exposition in ( ), we present a number of splitting algorithms here
in terms of their characterization as frugal resolvent splitting methods. We then extract their
characteristic coefficient matrices and note the validity of the Tam assumptions for these
matrices.

A.4.1 Douglas-Rachford Splitting

Douglas-Rachford splitting addresses the problem of finding a zero of maximally monotone
operators A and B on R?, which is equivalent to minimizing f;(x) + f>(x) where A and B
are the subgradients of ccp functions fi and f. ( ; )

Let counter k& = 0, tolerance € as desired, y € (0,1), @ > 0, and 0=0forz e R?
Letx; = J(IA(Zk)

Let xo = Jop(2x1 — 25)

Let 2541 = 2K 4y (xp —xy). If |2
Let k = k + 1, go to step 2.
Return x

k+1 _ 7K|| < €, go to final step.

SNk W=

In terms of the corresponding coeflicient matrices, we have the following:

00
M=[-1 1],L= [2 0]'
Clearly, the null space of M is spanned by the ones vector, »; ; L; ; = n, ||L|| < 1, and arow
of L sums to zero. Steps 2 and 3 correspond to the fixed point iteration x = Jp(Bz + Lx),

where B = (_11) =-MT,

< 0, so all of the assumptions are satisfied

We alsohave L + LT = 2Id+MTM = [—ll _11

by the Douglas-Rachford splitting.

A.4.2 Progressive Hedging
As noted by ( ), progressive hedging (PH) (

) can be thought of as a special case of Douglas-Rachford splitting where the
objective function is f(x) + tw(x) forx € RS, n = Zl.Tzl n; across stages in |T|, f(x) =
Zle psfs(x*) (the expected value of the problem over scenarios in S), and ¢y is the indicator
function for the subspace W defined by the non-anticipativity constraints. Note that the x
we begin with in this view of PH is the full set of decision variable across all scenarios
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— it is not the decision variable for a single instance which is then further lifted. While
the separability of f across scenarios means its prox can be calculated separately for each

scenario, that splitting is not explicitly defined by the Douglas-Rachford characterization of
PH.

A.4.3 Ryu Algorithm

Ryu’s algorithm ( ) addresses the problem of finding a zero of maximally monotone
operators A, B, and C on R?, which is equivalent to minimizing f; (x) + f>(x) + f3(x) where
A, B, and C are the subgradients of ccp functions fi, f>, and f3. In terms of the corresponding
coeflicient matrices, we have:

Let counter k£ = 0, tolerance € as desired, 6 € (0,1), @ > 0, and 720 =0 for z € R*
Letx; = Joa(2h)

Let x; = Jop(x1 + lec

Letx3 = Joc(x1 — 21 + X2 — 22)

Let z’l‘” = z’l‘ +0(x3 —x1)

Let z’z‘” = z’z‘ +0(x3 — x2). If ||zX*1 = ZK|| < €, go to final step.

Let k = k+ 1, go to step 2.

Return %(xl + X2 +X3)

S Al

-1 0 1

M:lo -1 1

000
],L: 1 0 0f.
110

As with Douglas-Rachford, we satisfy all required assumptions for convergence as a frugal
resolvent splitting. Tam also provides an extension of this algorithm to n operators.

A.4.4 Malitsky-Tam Algorithm

The Malitsky-Tam minimal lifting algorithm ( ) finds the zero of the
sum of n maximal monotone operators Fj ... F,, equivalent to minimizing ), f;(x) where
each f; is ccp and F;(x) = df;(x).

18



bl e

Let counter k = 0, tolerance € as desired, ¥ € (0, 1) and z° = 0 for z € R?? .

Letx| = JFI(Z]f).

Forie2...n—1,letx; = Jp (xi-1 + zf — zf‘_l).

Letx, = JF,,(xl + Xp_1 = Zn—1)-

X2 — X1

X3 — X3

Let X1 = zk + y JIF |24 = 2¥|| < €, go to final step.
Xn — Xn-1

Let k = k + 1, go to step 2.

. Return x;

In terms of the corresponding coefficient matrices, we have:

1 1 0 ... 0 O] [0 0 0 ... 0 O]
0 -1 1 ... 0 0 100 ...00
0 0 -1 ... 0 0[,L=[010 0 0|
0 0 0 ... -1 1 100 ... 10

As with Douglas-Rachford and the Ryu algorithm, this satisfies all required assumptions.
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