
Optimization via Adaptive Resolvent Splitting

Peter Barkley

Naval Postgraduate School

January 18, 2024

Motivation

▶ Many optimization problems remain too big for one CPU
▶ Thankfully, we have lots of CPUs available
▶ Decomposing, or “splitting,” the problem, breaks it into

subproblems which are individually tractable
▶ This has to be done thoughtfully to actually converge
▶ Many existing algorithms fail to account for the

communication structure between the compute nodes

www.nps.edu 2 / 37

Goal

Distributed, decentralized optimization of finite sums of convex
functions via splitting methods which can be optimally adapted
for the communication structure of the compute nodes and the
structure of the problem.

Focusing on the following contexts:
1. Autonomous UxS mission optimization

– “1,000 targets in 24 hours”
2. Very large scale optimization problems in a high

performance parallel computing environment

www.nps.edu 3 / 37

Agenda

▶ Weapon Target Allocation Problem

▶ Mathematical Foundations

▶ Algorithm Design

▶ Future Work

www.nps.edu 4 / 37

Weapon Allocation

▶ The mission is to optimally
assign various munitions to
a set of different targets

▶ Munitions have different
probability of kill (Pk) for
each target

▶ Each target has an
assigned value

▶ An optimal assignment
minimizes the value of the
surviving enemy units

www.nps.edu 5 / 37

WTA Formulation

This formulation is derived from [Hendrickson et al., 2023]
▶ Indices and Sets

i ∈ 1 . . . n weapons
j ∈ 1 . . .m targets

▶ Parameters
Vj : the value of target j
Pkij : the probability that weapon i destroys target j

▶ Decision Variables xij ∈ {0, 1}: whether weapon i is
employed against target j

min
x

m∑
j=1

Vj

n∏
i=1

(1− Pkij)
xij (1)

s.t.
m∑
j=1

xij ≤ 1 ∀i ∈ 1 . . . n (2)

www.nps.edu 6 / 37

WTA: Toy problem

www.nps.edu 7 / 37

WTA: Toy problem

www.nps.edu 7 / 37

WTA: Naive solution

If platform solves their employment independently remaining
enemy value is 41.2

www.nps.edu 8 / 37

WTA: Full solution

The coordinated decision is much better: remaining enemy
value is 33.7

www.nps.edu 9 / 37

WTA: Feasible comms

Antenna height, radio frequency restrictions, and radiated
power can reduce communications options for coordination

www.nps.edu 10 / 37

WTA: Large-scale

Why do we need splitting?

large problems
www.nps.edu 11 / 37

WTA: Large-scale

Why do we need splitting?

very large problems
www.nps.edu 11 / 37

WTA: Large-scale

Why do we need splitting?

Very, very large problems
www.nps.edu 11 / 37

WTA: Large-scale

Why do we need splitting?

Very, very large problems
www.nps.edu 11 / 37

Background
Resolvents Splitting Methods Graphs

Prox Definition
▶ The prox of a function f at x is defined as

proxf (x) = argminu f(u) +
1
2 ||u− x||2.

▶ z = argminu f(u) +
1
2 ||u− x||2

▶ =⇒ ∂
∂z

(
f(x) + 1

2 ||z − x||2
)
∋ 0

▶ =⇒ 0 ∈ ∂f(z) + (z − x)

▶ =⇒ x ∈ z + ∂f(z)

▶ =⇒ x ∈ (Id + ∂f) (z)

▶ =⇒ z = (Id + ∂f)−1(x)

www.nps.edu 12 / 37

Background
Resolvents Splitting Methods Graphs

Prox Definition
▶ The prox of a function f at x is defined as

proxf (x) = argminu f(u) +
1
2 ||u− x||2.

▶ z = argminu f(u) +
1
2 ||u− x||2

▶ =⇒ ∂
∂z

(
f(x) + 1

2 ||z − x||2
)
∋ 0

▶ =⇒ 0 ∈ ∂f(z) + (z − x)

▶ =⇒ x ∈ z + ∂f(z)

▶ =⇒ x ∈ (Id + ∂f) (z)

▶ =⇒ z = (Id + ∂f)−1(x)

www.nps.edu 12 / 37

Background
Resolvents Splitting Methods Graphs

Resolvent Definition
[Bauschke et al., 2011]
▶ The resolvent of a (potentially set-valued) operator A, on

some x ∈ H, is given by JA(x) = (Id +A)−1(x) where Id is
the identity operator.

▶ Equivalently, if JA(x) = z, we have x ∈ (Id +A)(z) or
x ∈ z +A(z).

▶ Finding a stationary point x = JA(x) is therefore equivalent
to finding a zero of A.

▶ The resolvent of the subdifferential of a convex, closed, and
proper (ccp) function is the prox operator of that function.

www.nps.edu 13 / 37

Background
Resolvents Splitting Methods Graphs

Douglas Rachford:

min
x∈Rn

f(x) + g(x)

1. x1 = J∂f (z
k) = proxf (z

k)

2. x2 = J∂g(2x1 − zk) = proxg(2x1 − zk)

3. zk+1 = zk + x2 − x1

Reformulation as a fixed point operator

T (z) = z + J∂g(2J∂f (z)− z)− J∂f (z)
zk+1 = T (zk)

www.nps.edu 14 / 37

Background
Resolvents Splitting Methods Graphs

Ryu’s Algorithm
▶ Can Douglas Rachford be extended?
▶ Frugal resolvent splitting with (possible) lifting

1. Resolvent Splitting: use only scalar multiplication, addition,
and the resolvent

2. Frugal: evaluate each resolvent only once per iteration
3. Lifting: increasing the dimension of the fixed point iterates

▶ For three operators – it can be extended, but only with
lifting [Ryu, 2020]

www.nps.edu 15 / 37

Background
Resolvents Splitting Methods Graphs

Ryu’s Algorithm

min
x∈H

f1(x) + f2(x) + f3(x)

x1 = JαA(z
k
1)

x2 = JαB(x1 + zk2)
x3 = JαC(x1 − zk1 + x2 − zk2)

θ ∈ (0, 1)
α > 0
A = ∂f1
B = ∂f2
C = ∂f3(

z1
z2

)k+1

=

(
z1
z2

)k

+ θ

(
x3 − x1
x3 − x2

)

www.nps.edu 16 / 37

Background
Resolvents Splitting Methods Graphs

Malitsky and Tam Algorithm [Malitsky and Tam, 2023]
▶ Build frugal resolvent splitting algorithms for any n

subdifferentials of convex functions
▶ Show that the minimal lifting is n− 1.

min
x∈H

n∑
i=1

fi(x)

x1 = JA1
(zk1)

...

xi = JAi
(xi−1 + zki − zki−1)

...

xn = JAn(x1 + xn−1 − zkn−1)



z1
...
zi
...

zn−1



k+1

=



z1
...
zi
...

zn−1



k

+ γ



x2 − x1

...
xi+1 − xi

...
xn − xn−1


www.nps.edu 17 / 37

Background
Resolvents Splitting Methods Graphs

▶ Malitsky and Tam recognize that these algorithms are
defined by two coefficient matrices (for x and z)

Coefficient-based definition
For x ∈ H, W ∈ Rp×n, and identity Id, let
x = (x1, . . . , xn) ∈ Hn, W = W ⊗ Id

Then for z ∈ Hd, x ∈ Hn, any frugal resolvent splitting can be
written as:

T (z) := z+ γMx, y = Bz+ Lx, x = JF(y)

where F = (F1, . . . , Fn), and M ∈ Rd×n, B ∈ Rn×d, L ∈ Rn×n

are coefficient matrices for M,B, and L.

www.nps.edu 18 / 37

Background
Resolvents Splitting Methods Graphs

Frugal Resolvent Splitting Assumptions

1. ker M = span({1n})
2. B = −MT

3. L+ LT − 2Id +MTM ⪯ 0

4.
∑

i,j Lij = n and L is lower triangular

5. For every z ∈ Hd, there is a unique x̄ ∈ H such that for
x = 1⊗ x̄

x = JF(Bz+ Lx)

For this assumption, it suffices to have one row of L sum to
zero.

6. ∥L∥ < 1

www.nps.edu 19 / 37

Background
Resolvents Splitting Methods Graphs

Douglas Rachford Revisited

T (z) = z + γ(x2 − x1)

M = −BT =
[
−1, 1

]
x1 = JF1(z)
x2 = JF2(2x1 − z)

L =

[
0 0
2 0

]

Ryu Revisited

T (z) = z+ γ

(
x3 − x1
x3 − x2

)

M = −BT =

[
−1 0 1
0 −1 1

]
x1 = JF1(z1)
x2 = JF2(x1 + z2)
x3 = JF3(x1 + x2 − z1 − z2)

L =

0 0 0
1 0 0
1 1 0


www.nps.edu 20 / 37

Background
Resolvents Splitting Methods Graphs

Malitsky and Tam Revisited

T (z) = z+γ


x2 − x1

...
xi+1 − xi

...
xn − xn−1

 M =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −1 1


x1 = JF1(z1)
...
xi = JFi(xi−1 + zi − zi−1)
...
xn = JFn(x1 + xn−1 − zn−1)

L =


0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . 1 0



www.nps.edu 21 / 37

Background
Resolvents Splitting Methods Graphs

Graph Laplacian

Given diagonal node degree matrix D and
adjacency matrix A, graph Laplacian W is:

W = D −A

1

2

3

4

Example

D =


2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

, A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

, W =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2



www.nps.edu 22 / 37

Background
Resolvents Splitting Methods Graphs

Graph Laplacian

If M ∈ RE×V is any directed edge adjacency
matrix for the graph, we also have
W = MTM

1

2

3

4

Example

M =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 MTM =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

 = W

www.nps.edu 23 / 37

Background
Resolvents Splitting Methods Graphs

Connectivity

▶ Node connectivity: minimum number of node deletions
required to disconnect the graph

▶ Edge connectivity: minimum number of edge deletions
required to disconnect the graph

Algebraic Connectivity

▶ Based on spectral analysis (eigenvalues) of the graph
Laplacian.

▶ W is positive semi-definite.
▶ Because all rows of W sum to zero, the smallest eigenvalue

λ1 = 0.
▶ The second smallest eigenvalue (or Fiedler value) gives the

algebraic connectivity of the graph. [Fiedler, 1973]
www.nps.edu 24 / 37

Assumptions

1. ker M = span({1n})
2. B = −MT

3. L+ LT − 2Id +MTM ⪯ 0

4.
∑

i,j Lij = n and L is lower triangular

5. For every z ∈ Hd, there is a unique x̄ ∈ H such that for
x = 1⊗ x̄

x = JF(Bz+ Lx)

For this assumption, it suffices to have one row of L sum to
zero.

6. ∥L∥ < 1

www.nps.edu 25 / 37

SDP formulation

min
L,W∈Rn×n

ϕ(L,W)

s.t. W1n = 0 (3a)

L+ LT − 2I +W ⪯ 0 (3b)
λ1(W) + λ2(W) ≥ c (3c)∑

Lij = n (3d)

W ⪰ 0 (3e)
W ∈ W (3f)
L ∈ L (3g)

This problem is convex!
www.nps.edu 26 / 37

Recovering coefficient matrices

Find M (weighted edge adjacency matrix)

▶ W satisfies the requirements to be a graph Laplacian
▶ e nonzero entries in lower triangle of W correspond to edges
▶ Define M ∈ Re×n

▶ Walk through nonzero entries in lower triangle of W ,
creating entries in sequential rows for each edge.

Find B

▶ B = −MT

www.nps.edu 27 / 37

Subproblems

▶ Once the algorithm has been designed, each node
sequentially solves the subproblem below.

▶ xi is the copy of the decision variables being optimized by
node i.

▶ If all required previous nodes have provided solutions,
computation can run in parallel with other nodes.

min
xi

fi(xi) +
1

2

∥∥∥∥∥∥(1− Lii)xi −
i−1∑
j=1

Lijx
k
j −

d∑
l=1

Bilz
k
l

∥∥∥∥∥∥
2

2

(4)

zk+1
l = zkl + γ

(
Mxk

)
l

www.nps.edu 28 / 37

Subproblems

▶ Once the algorithm has been designed, each node
sequentially solves the subproblem below.

▶ xi is the copy of the decision variables being optimized by
node i.

▶ If all required previous nodes have provided solutions,
computation can run in parallel with other nodes.

min
xi

fi(xi) +
1

2

∥∥∥∥∥∥(1− Lii)xi −
i−1∑
j=1

Lijx
k
j − vki

∥∥∥∥∥∥
2

2

(4)

vk+1
i = vki − γ

(
Wxk

)
i

www.nps.edu 28 / 37

Critical Path Minimization

Critical Path Cycle Minimization Algorithm Design
Program

min
x,s,Z,W

n
max
k=1

s3n−1,k

s.t. W1n = 0 (5a)
Z −W ⪰ 0 (5b)
λ1(W) + λ2(W) ≥ c (5c)∑

Zij = 0 (5d)

W ∈ W, Z ∈ Z (5e)
sij − sik ≥ (tkj +m)xjk −m ∀i, k, j > k (5f)
si+1,j − sik ≥ (tkj +m)xjk −m ∀i, k, j ̸= k (5g)
nxkj ≥ |Zjk| ∀j > k (5h)
nxkj ≥ |Wkj | ∀j < k (5i)

www.nps.edu 29 / 37

Results

▶ Built algorithms for different
node calculation times

▶ Current implementation
allows quick calculation of up
to 4 nodes

▶ One algorithm performs
better than Malitsky Tam!

L:


0 0 0 0
0 0 0 0
1.5 0.5 0 0
0.5 1.5 0 0


W:


1 0 −1 0
0 2 −0.5 −1.5
−1 −0.5 1.67 −0.17
0 −1.5 −0.17 1.67


www.nps.edu 30 / 37

Algorithm Execution

www.nps.edu 31 / 37

Results

www.nps.edu 32 / 37

Future Work

1. Exploration of the convergence rate of various network
structures

2. Determination of the impact on convergence of the ordering
of the functions in the finite sum.

3. Evaluation of various algorithm generation SDP objective
functions and constraints

4. Application to additional optimization problems

www.nps.edu 33 / 37

Implementation

▶ Using cvxpy for non-linear convex optimization
[Diamond and Boyd, 2016]
▶ Provides interface for both SDP and subproblems

▶ Using YALMIP in MATLAB for Mixed Integer SDP
solutions. [Löfberg, 2004]

www.nps.edu 34 / 37

Questions?

www.nps.edu 35 / 37

SDP Code

assumes n, penalty matrices PW, PL
W = cvx.Variable((n,n), PSD=True)
Z = cvx.Variable((n,n), PSD=True)

cons = [Z - W >> 0,
cvx.lambda_sum_smallest(W, 2) >= connectivity,
cvx.sum(W, axis=1) == 0,
cvx.sum(Z) == 0]

cons += [Z[i,i] <= 3 for i in range(n)]
cons += [Z[i,i] >= 2 for i in range(n)]

Z_penalty = cvx.sum(cvx.multiply(PL, cvx.abs(Z)))
W_penalty = cvx.sum(cvx.multiply(PW, cvx.abs(W)))
obj = cvx.Minimize(Z_penalty + W_penalty)
prob = cvx.Problem(obj, cons)
prob.solve()

www.nps.edu 36 / 37

References

Bauschke, H. H., Combettes, P. L., et al. (2011).
Convex analysis and monotone operator theory in Hilbert spaces, volume 408.
Springer.

Diamond, S. and Boyd, S. (2016).
CVXPY: A Python-embedded modeling language for convex optimization.
Journal of Machine Learning Research, 17(83):1–5.

Fiedler, M. (1973).
Algebraic connectivity of graphs.
Czechoslovak mathematical journal, 23(2):298–305.

Hendrickson, K., Ganesh, P., Volle, K., Buzaud, P., Brink, K., and Hale, M. (2023).
Decentralized weapon–target assignment under asynchronous communications.
Journal of Guidance, Control, and Dynamics, 46(2):312–324.

Löfberg, J. (2004).
Yalmip : A toolbox for modeling and optimization in matlab.
In In Proceedings of the CACSD Conference, Taipei, Taiwan.

Malitsky, Y. and Tam, M. K. (2023).
Resolvent splitting for sums of monotone operators with minimal lifting.
Mathematical Programming, 201(1-2):231–262.

Ryu, E. K. (2020).
Uniqueness of drs as the 2 operator resolvent-splitting and impossibility of 3 operator
resolvent-splitting.
Mathematical Programming, 182(1-2):233–273.

www.nps.edu 37 / 37

	Introduction
	Applications
	Mathematical Foundations
	How it works
	Future Work
	Implementation
	References

